Contrôle N° 02

Novembre 2000

 

 

Recherche personnalisée sur les différents sites

Correction
de chaque
exercice

I- Newton et le mouvement de la Lune (1642 - 1727)

II- Le solénoïde.

III- Dosage.

IV- Étude d'un acide.


I- Newton et le mouvement de la Lune (1642 - 1727)

 En 1666, Newton étudie les caractéristiques du vecteur accélération

d’un mobile animé d’un mouvement circulaire uniforme, puis les utilise

pour le mouvement de la Lune, qui décrit une orbite circulaire de rayon

r = 382800 km en 27 jours 7 heures 43 minutes et 11 secondes.

1)- Tester nos connaissances sur le mouvement circulaire uniforme.

Étude préliminaire.

a)-  Représenter la trajectoire d’un mobile de centre d’inertie G animé

d’un mouvement circulaire uniforme. Représenter le

repère de FRENET.

b)-  Donner les coordonnées du vecteur vitesse du point G, du mobile

dans le repère de FRENET.

c)-  Donner les coordonnées du vecteur accélération dans le

repère de FRENET.

2)- Tester nos connaissances sur le mouvement circulaire uniforme.

Répondre par Vrai ou Faux et justifier de façon détaillée votre réponse.

a)- L’accélération est nulle car la vitesse est constante ?

b)- Le vecteur accélération est normal car la norme du vecteur vitesse ne

change pas ?

c)- Le vecteur accélération est constant ?

d)- La valeur de l’accélération ne change pas ?

e)- La norme du vecteur accélération ne change pas si la valeur de la

vitesse est multipliée par deux ainsi que le rayon de l’orbite ?

3)- Calculer la valeur de la vitesse v de la Lune sur son orbite et

en déduire la valeur de son accélération.

4)- En utilisant la deuxième loi de Newton, en déduire la valeur de

l’intensité du champ de gravitation créé par la Terre au niveau de la Lune.

    

Haut

II- Le solénoïde.

Une bobine, assimilable à un solénoïde théorique, a une

longueur = 50 cm et comporte N = 200 spires.

1)- Calculer la valeur du champ magnétique à l’intérieur de ce

solénoïde lorsque l’intensité du courant qui le traverse vaut :

I = 0,20 A

(on donne µ0 = 4  π x 10 –7 S.I)

- L’axe de la bobine est placé horizontalement et perpendiculairement 

au méridien magnétique. Une petite aiguille aimantée est placée à

l’intérieur de la bobine au voisinage de son centre.

2)- Faire un dessin schématisant l’ensemble du système dans un plan

horizontal, lorsque  aucun courant ne circule dans la bobine.

On figurera les points cardinaux (Nord, Sud, Est et Ouest) et on

indiquera les pôles de l’aiguille aimantée. On peut représenter la

bobine par un rectangle.

- On fait passer un courant constant d’intensité I = 0,20 A dans la

bobine. L’aiguille aimantée dévie alors d’un angle α vers l’Est.

3)- Faire un schéma du dispositif à l’équilibre et indiquer : le sens du

courant dans la bobine (il suffit de représenter une spire), les faces de

la bobine.

4)- Calculer la valeur de l’angle α (en degrés) dont l’aiguille a dévié

(composante horizontale du champ magnétique : bh = 2,0 x 10 –5 T.

Haut

III- Dosage.

1)- On désire préparer par dilution un volume V = 100 mL d’une solution

d’acide chlorhydrique de concentration CA = 1,0 x 10–2 mol / L en partant

d’une solution mère de concentration C0 = 2,5 x 10–  1 mol / L.

Quel volume V0 de solution mère doit-on utiliser et quel est

le matériel nécessaire à la préparation de la solution ? Justifier.

2)- Afin de vérifier si la dilution est correcte, on effectue un dosage colorimétrique.

  On dose un volume VA = 20 mL de la solution ainsi préparée par une

solution d’hydroxyde de sodium (soude) de concentration

CB = 1,0 x 10 –2 mol / L et on constante qu’il faut verser un volume

VB = 24 mL de base pour atteindre l’équivalence acido-basique.

a)-  Définir l’équivalence acido-basique.

b)-  Écrire l’équation-bilan de la réaction de dosage.

Quelles sont les caractéristiques de cette réaction ?

c)-  Pour repérer l’équivalence, on utilise un indicateur coloré. Lequel ?

pourquoi ? Justifier.

d)-  Calculer la concentration CA de la solution d’acide chlorhydrique dosée.

e)-  Quel volume de solution mère a-t-on en fait réellement utilisé si

l’on suppose que les autres manipulations sont correctes ?

3)- Lors du dosage précédent, le pH est de 2,4 après un ajout de la

solution d’hydroxyde de sodium de volume V’B = 12,0 mL. Recenser

toutes les espèces présentes dans la solution et calculer la concentration

de tous les ions présents.

 

Indicateurs colorés

Hélianthine

B.B.T

Phénolphtaléïne

Zone de virage

3,0 - 4,6

6,0 - 7,6

8,2 - 10

Haut

IV- Étude d'un acide.

Un acide AH, de concentration C = 1,0 x 10–2 mol / L,

a un pH égal à 3,4.

1)- Calculer la concentration des différentes espèces présentes dans l'eau.

2)- Calculer le coefficient d'ionisation α de cet acide.

3)- Comment peut-on qualifier cet acide ?

Écrire l'équation bilan de la réaction entre l'acide et l'eau.

On donne : ;   pKe = 14 ;

 

 

Haut